
Technological Forecasting & Social Change 73 (2006) 1121–1143
Knowledge integration and network formation
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Abstract

In this paper, we highlight how inter-firm collaboration networks are influenced by the knowledge composition

of goods in an industry. For this purpose, we carry out an agent-based simulation study in which firms integrate their

competencies under different knowledge-based regimes. In this way networks form. The results reveal that

knowledge regime significantly influences the network structure, and interaction among firms not only is very

intensive when the products are specialized but also have common knowledge among them.
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Keywords: Networks; Knowledge; Learning; Agent based simulation

1. Introduction

In recent decades, the intensity of horizontal and vertical relations among firms has increased to a

large extent, especially in the case of knowledge intensive industries. The rapid innovations and

increasing product complexity in these industries have not only raised the requirements for compatibility

among product components, but have also been accompanied by richer technological opportunities.

These developments prepared the grounds for intensive relations among firms, in the face of difficulties

faced by a single firm to be self sufficient in serving a rapidly changing market. Mostly,

interdependencies among products, compatibility requirements, specialization and collaboration

accompany each other in these systems. Task complexity, combined with time pressure, makes

cooperation among firms more efficient than vertical hierarchies [1,2].
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In such an environment, knowledge has become a central factor in influencing industry dynamics.

In most industries, firms need to pursue strategies that favour external relations, not only in

subcontracting components but also to share knowledge and make use of knowledge spillovers. A

major process that accompanies the inter-firm relations is the significant knowledge flow that takes

place between the firms, which is usually considered to be an important engine for innovation. These

knowledge spillovers are not only caused by formalized arrangements between firms, but may also be

the result of informal communications, a concept which Allen [3] termed to be collective invention

(see also [4]). The structure of networks among firms is inevitably influenced by the competencies

needed in production and the architecture of these networks yield insights into effectiveness and

efficiency with which knowledge is transferred, created and also the innovative performance of firms

[5–7].

There is a rich literature that addresses in a broad sense the relation between knowledge-specific

characteristics and networks. Among these, studies that focus on uncertainty and industry events [8–10];

complementarities in goods [11], similarities in knowledge bases [12,13] the stage in the industry life

cycle [14]; interdependence in products [15], system embeddedness and observability of knowledge

[16]; hierarchical organization of knowledge base [17], characteristics of knowledge in terms of

technological opportunities and tacitness [18] can be cited. Although most of these studies focus on

different aspects of knowledge and networks, there has been no systematic study in the literature about

how the network structure responds to different ways in which knowledge is embodied in goods in the

economy as we investigate in this paper.

The question addressed in this paper is how the network structure responds to different knowledge-

based regimes. The approach that is used differs from previous studies in that a dynamic network

approach is adopted. The paper is composed of two parts, where firstly we present a very simple

economy with two producers, two products and two types of competencies, and analyse via an analytical

model, how and under which conditions producers collaborate and integrate their knowledge. In the

second part, we extend the model to many producers, competencies and products. Because of the

analytical complexity in this part, we perform a simulation study and analyse the collaboration dynamics

in this case. Specifically, in the agent-based simulation model, self-interested actors who have

competencies in different areas chose partners to integrate their knowledge and produce. Actors also

learn from each other in this process, and networks form by the interactions among them. We analyse

these networks and highlight the relation between patterns of interaction and knowledge base of the

industry. We model the knowledge base using the concept of relatedness among products (similarity in

their knowledge requirements) and the level of specialization of products. The results reveal that

interaction among actors not only is very intensive when the products are specialized but also have

common knowledge among them.

An important result of this paper is that we show how a simple economy with two producers behaves

differently from an economy with many producers, competencies and products. In this sense, we show

that the results pertaining to a duopoly case cannot be generalized to a case where there are many firms.

As far as the relationship between knowledge base and networks are considered, in an economy with two

producers specialization of the goods places stricter restrictions on collaboration possibilities than the

case where there are many producers.

The paper is organized as follows. In the second section, we explain the main model and present

some preliminary analytical results. In the third section, we present an agent-based simulation study

where self-interested economic actors form networks to integrate their knowledge. We analyse the
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structure of resulting networks under different regimes of the knowledge base in the fourth section.

Fifth section includes some empirical insights. Some discussions and concluding remarks follow in the

last section.
2. The model

2.1. General

Let us consider a simple economy in which there are two producers, two goods and two knowledge

types. Each of the goods requires both types of knowledge in their production, though the intensity of

use can be different. Specifically, we assume a Cobb–Douglas production function for each good, with

two knowledge inputs and where cas measures the extent to which good a is knowledge s intensive (we

assume constant returns to scale, so that ca1+ca2=1 for each good). To formalize, denote knowledge

input by k, where kis shows producer iVs knowledge endowment in area s. It follows that the amount of

product a that can be produced by i is given by;

yia ¼
Y
s¼1;2

k
cas
is where

X
j

cas ¼ 1 ð1Þ

We assume that there are no competing uses for the knowledge, so that its opportunity cost is zero, and

producers use all their knowledge in production. We also assume that demand is perfectly elastic so that

profits increase monotonically with quantity. We take relative prices to be unity. In this production

function, we consider an economy in which the main input in production is knowledge. It is important to

underline that, although we use the term knowledge here, it can be thought of as human capital or

competence, so that it accumulates as a result of learning. Therefore, the amount of the final product

which we consider to be immaterial depends on the knowledge it embodies. Higher levels of knowledge

produce more output. An example of this sort of production function can be scientific collaborations

(which can be considered to be not too much different from research collaborations among firms, to the

extent that the knowledge combination process is concerned). Here, the output requires expertise of

different scientists. As a result of this process the scientific paper is produced, and in this process, the

contributors also accumulate new knowledge.

We assume that each of the producers is knowledgeable in both types, but is specialized in only one of

them (i.e. knows one type of knowledge more than the other). Let us assume that producer 1 is expert in

knowledge type 1, and producer 2 is expert in knowledge type 2, so that k11Nk12 and k22Nk21. Single

production means that a producer performs the production activity by him/herself alone, utilizing his/her

own knowledge in both types. Accordingly, if production is to be maximised, he/she will produce that

good which uses his expertise area more intensively. We assume that good 1 is knowledge 1 intensive,

and good 2 is knowledge 2 intensive, so that c11Nc12 and c22Nc21 (since we assume constant returns to

scale, this implies that c11N1/2 and c22N1/2). Then, it is straightforward to show that in the single case,

producer 1 produces good 1, and producer 2 produces good 2.1
1 Specifically, the choice faced by producer 1 can be expressed as, max( y1
1; y2

1)=max(kc11
11 k(1�c11)

12 , k11
(1�c22)k12

c22). Producer 1 will

produce good 1 if the following condition holds; k11
c11k12

(1�c11)Nk11
(1�c22)k12

c22 which is equivalent to k11
c11+c22� 1Nk12

c11+c22� 1 and since

k11Nk12 from our assumption above, producer 1 produces good 1. Analogously, when alone, producer 2 produces good 2.
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2.2. Knowledge integration

Single production is only one of the options that the producer can choose. Otherwise, output can

further be increased if both producers integrate their knowledge, produce both goods together and share

the final output. In making this choice, we assume that the producer simply makes a comparison between

the two cases (single or joint), and selects the one that yields more output for him. For pairwise

production to be realized, both producers simultaneously should find it beneficial to collaborate. The rule

for knowledge integration is as follows: the amount of joint knowledge that enters the production

function is maximum of what each agent knows in type s and is given by;2

kpairs ¼ max kis; k
j
s

� �
8s ¼ 1 . . .K ð2Þ

Since there are two knowledge types (K=2), for effective knowledge integration to occur it should be the

case that k11Nk21 and k22Nk12 (which states that no agent has absolute superiority in both knowledge

types). When producers integrate their knowledge, the amount of knowledge that enters the joint

production function is given by

Knowledge 1 : max k11; k21ð Þ ¼ k11

Knowledge 2 : max k12; k22ð Þ ¼ k22:

Let us first take the case of producer 1. He/she has to decide between producing good 1 alone (Eq.

(1)), or to produce both goods with producer 2 and get half of total production so that his/her gain in joint

production is given by;

y
pair
a;b ¼

ya kpair
� �

þ yb kpair
� �

2
ð3Þ

for a, b=1, 2 (goods). We make the 50% split rule based on the following intuition. If the knowledge

levels among the two producers are too different (if one of them is much more knowledgeable than the

other), then collaboration will not take place in any case, as we demonstrate below. Therefore, the two

producers should be sufficiently close to each other in their relative expertise areas if they are to

collaborate. Therefore, it is reasonable to assume that they share production output equally. This rule also

takes into account the fact that the relative price levels are unity.

The question that we address is, for which parameter values and initial knowledge levels will the

agents simultaneously prefer to produce together rather than alone?

Proposition 1. In the initial period, two producers will form pairs if and only if the following conditions

are satisfied simultaneously:

For producer 1

k11b
2k

1�c11ð Þ
12 � k

1�c11ð Þ
22

k
c22
22

 ! 1
1�c11�c22

ð4Þ
2 Here, we assume that once producers decide to collaborate, then they contribute with all their endowment, in other words

they reveal all their knowledge in the production.



Fig. 1. Collaboration conditions for the same major knowledge levels (c11=c22=0.9).
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For producer 2

k22b
2k

1�c22ð Þ
21 � k

1�c11ð Þ
11

k
c11
11

 ! 1
1�c11�c22

ð5Þ

for c11+c22N1.

Proof. See Appendix A. 5

Inequalities (4) and (5) imply that the more is the knowledge of the other producer, the more likely

will the producer himself be willing to collaborate. Below, we elaborate further on Proposition 1 in

relation to Fig. 1.3

Tomake thingsmathematically tractable, let us assume that k12=k21=1. Let us also assume symmetrical

weights for the two products. That is to say that, c11=c22 and which also implies c12=c21. As noted above,
c11 measures the extent of knowledge intensiveness of the products in their respective expert types.

The shaded areas in Figs. 1 and 2 show the areas in which collaboration will take place as a function of

the major knowledge levels. These figures are based on inequalities (4) and (5). The intersection point of

the curves is the level of minor knowledge type, which is equal to 1 in 2 and 1. Whether collaboration

takes place or not depends on the major and minor knowledge levels of producers and the production

parameters. Collaboration can only take place when the major knowledge levels are higher than the

minor knowledge levels (that is, major knowledge levels should be greater than 1 in Fig. 1). If the initial

major knowledge levels are the same (which corresponds to a 458 line in Figs. 1 and 2), collaboration

will take place on the part of the 458 line greater than 1.

Collaboration does not take place in two cases. First when major knowledge types are smaller than

minor levels, and second, when the difference between the major knowledge levels among the two
3 It follows directly from Proposition 1 that, when initial major knowledge levels are the same for both producers (k11=k22),

collaboration will take place in the first period if and only if k22Nk21 and k22Nk21: Therefore, if the initial knowledge levels in

the major knowledge types are the same, then there will always be collaboration, since by our assumption above producer 1 is

an expert in area 1 (k11Nk12) and producer 2 is an expert in area 2 (k22Nk21).



Fig. 2. Collaboration conditions for the same major knowledge levels (c11=c22=0.6).
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producers is very high. This means that expertise level of one producer is too little compared to the other

producer. So only within a certain limits of major knowledge levels will collaboration take place, and

these limits narrow down as c11 increases. (In Fig. 1, the c11=c22=0.9 and the area of collaboration is

smaller than Fig. 2 where c11=c22=0.6.)
Intuitively, this is because higher c11 implies lower c12, which means that the intensity of the minor

knowledge type gets lower. But this means that, the contribution of the partner is lower, which is in the

minor category. Therefore, the partner should be high enough an expert to compensate for the lower

weight of the minor category. Consequently, as c11 increases, the area of collaboration falls as shown in

Fig. 1 in comparison to Fig. 2.

To summarize, the likelihood of single production increases as (a) c11, c22 increases and (b) when

either partners knowledge level is too low compared to the partner him/herself, since then the higher

knowing producer will not be willing to participate. The higher are these production parameters, the less

difference among competencies is permitted for collaboration to take place (see Fig. 1).

Proposition 2. The more specialized are the products, the closer the producers should be in their

respective expertise fields for collaboration to take place initially. Similarly, the less specialized are the

products, collaboration can take place even if the expertise levels are relatively different, i.e. there is a

higher difference between their knowledge levels in their respective major categories.

However, the aboveanalysis is only confined to the first period.Asproductive activities continue learning

takes place, and knowledge levels are updated. In the sections below, we incorporate learning effects.

2.3. Learning

In the previous section, we analysed the conditions under which collaboration occurs in the initial

period. In this section, we analyse the behaviour of the system in the second period, as agents gain

experience in the production process and accumulate knowledge. We assume that learning takes place in

both types of knowledge. It is learning by doing, and the amount learned depends upon the amount

produced. Therefore, the extent that producer i learns depend on the level of producer jVs knowledge as
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well in the case of joint production. In each period, we assume agents re-consider their decision about

collaborating, based on the new knowledge levels. The learning function by which knowledge levels are

updated is given by Eq. (6), for producer i in knowledge type s.

(6)

kis tð Þ ¼ kis t � 1ð Þ þ hiy tð Þg tð Þ;

g tð Þ ¼ di tð Þif kis t � 1ð ÞNkjs t � 1ð Þ
¼ di tð Þ kis t�1ð Þ

kjs t�1ð Þ else

Eq. (6) implies that learning is measured by how much the agent can make use of production y(t)

(given by Eq. (3)): According to this function, the amount that the agent learns in a particular knowledge

type depends on the following. Firstly, it depends on the amount of production that took place, y(t).The

higher is the amount produced, the higher is the amount that the agent can increase his knowledge. Since

production embodies knowledge in this model, this learning process can be thought as learning by doing,

in which the agent learns from production experience. Obviously, the amount that he can make use of

production depends on other factors as explained below.

Secondly, the amount of learning depends on the capability of the agent which is different for all

agents, as given by hi: This parameter measures the ability of the agent to make use of the production to

increase his knowledge. In other words, it measures the extent to which he can use y(t) to accumulate

more knowledge.

In the learning function, we also include the termmeasuring the relative knowledge levels between the

partners i and j; as given by the second part of (6), (g(t)). This part is based on the intuition that, in a joint

production process, the amount by which the agent makes use of the production experience will be

limited to the extent that he contributes to production relative to the partner. If his initial knowledge is

too little compared to his partner, he cannot learn much, as given by the second part of g(t).4 On the

other hand, if agent i knows more than his/her partner (agent j) before production, there is only an

uncertainty in his ability to make use of production and increase his knowledge given by di(t) for agent i
in period t. This is because now there is no other partner from whom he can learn, since he is already the

expert in the partnership. This is given in the first part of the function g(t). Overall, in this case, his

learning depends on his capability, the production amount and an uncertainty term, di(t). We include an

uncertainty term, which we take to be 1 in the analytical model, but which we change in the simulations.

This term is used to capture the temporal variations in which an agent can make use of the production to

add to his knowledge, which is not the same in all periods because of environmental conditions.

Therefore, it is not always fully in the agents control to make use of production, but external conditions

are also taken into account which maybe more favourable for adding to the knowledge in some periods

than in others which we measure by di(t).
5

4 Here, the agent cannot increase his knowledge too much if he knows much less than his partner, because it is the partner’s

knowledge which makes the highest contribution to the product. This part also makes sure that there are no big jumps in the

learning amounts of the agents. However, if the agent has a very superior capability hi, he can still leapfrog the partner.
5 We interpret this learning function as learning by doing. Indeed, in the Alchian sense this functional form does not rule out a

concave learning function. In this function, we take into account the relative knowledge levels between the partner and the

agent, so that the amount the agent learns depends on what his partner knows among other factors. For example, if in two

consecutive periods, the agent has a partnership in which he/she is the expert, and in the next period he/she has a partnership

with another agent who knows more than him/her, his/her learning amount can diminish in this knowledge type. Therefore, the

function emphasizes the important role of partners in the learning process.
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The knowledge types are updated in all the knowledge types that enter the production function of

goods produced by the pair or the agent him/herself.

At this point, one question of interest is, will there be collaboration in the second period once there is

a collaboration in the first period? In other words, what maintains the continuity of collaborations? For

clarification, we denote period 0 by t�1 and period 1 by t.

The possibilities for collaboration in the second period is given by the following conditions. For

analytical tractability, we assume that the learning capabilities of producers are the same and di(t)=1.

Proposition 3. If capability levels are the same among producers, and if there was collaboration in the

first period, collaboration will continue in the second period if and only if the following conditions are

met for producers 1 and 2,

For producer 1

k
1�c11�c22
11 t � 1ð ÞN 2k

1�c11
12 t � 1ð Þ
k

c22
22 t � 1ð Þ � k22 t � 1ð Þ1�c11�c22

!
w

 
ð7Þ

where

w ¼
1þ h k11

k22

� �c11 þ k22
k11

� �1�c22
� �� 	1�c11�c22

1þ h k11
k22

� �c11�1 þ k11
k22

� ��c22
� �� 	1�c11�c22

For producer 2

k
1�c11�c22
22 t � 1ð ÞN 2k

1�c22
21 t � 1ð Þ
k

c11
11 t � 1ð Þ

� k11 t � 1ð Þ1�c11�c22

!
/

 
ð8Þ

and

/ ¼
1þ h k22

k11

� �c22 þ k22
k11

� �1�c11
� �1�c11�c22

1þ h k22
k11

� �c22�1 þ k22
k11

� ��c11
� �1�c11�c22

Proof. See Appendix A. 5

Proposition 3 is interpreted as follows. Since we assume there is collaboration in the first period, the

conditions given by (4) and (5) are already satisfied. The new condition imposed by Proposition 3 is

shown by Fig. 3 which is the same as Fig. 1 plus the new constraints shown by dark grey areas.

Figs. 3 and 4 are based on Eqs. (7) and (8), where the horizontal and vertical axis are the first period

major knowledge levels. Since there was collaboration in the first period by assumption, we are in any

point inside the light grey area (this area is the same as Fig. 1). The second period constraints are

revealed by the addition of the dark grey areas. Therefore, for collaboration to continue in the second

period, the first period major knowledge levels should be somewhere in the total shaded area. If in the

first period there was collaboration, this means that collaboration will continue in any case in the
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second period too, since the light grey area is covered by the total shaded area (light grey and dark

grey).6

Another question of interest is, what happens in the second period if there is no collaboration in the

first period? From Figs. 1 and 2, it is known that if the major knowledge levels of the two producers are

not within the shaded regions, than there is no collaboration in the first period. Nevertheless, if their

initial major knowledge levels fall within the dark shaded regions in Figs. 3 and 4, then collaboration

will begin in the second period, although there was no collaboration in the initial period. The intuition

behind this is as follows. No collaboration in the first period means that the agents are too far apart from

each other in terms of their expertise levels (see Proposition 1) initially. Nevertheless, for the same

capability levels, the distance between their knowledge levels after learning takes place can bring them

closer to each other in the second period. There is a certain range of initial knowledge levels which will

permit this to take place in the second period. These initial knowledge levels are given by dark shaded

regions in Figs. 3 and 4. Therefore, if the initial knowledge levels are within this range, collaboration

will begin in the second period.

In this section,we presented some analytical results of themodel, taking an economywith twoproducers,

two knowledge types and two products. The results highlight the critical role of complementarities in

production. Producers will find it profitable to form a collaboration only when they will get higher

production by integrating their knowledge is the basic premise of our model. We investigated the role of

parameters in influencing the producers’ willingness to collaborate in subsequent periods.

Although this model gives a basic idea on the logic of knowledge integration and production, the real

world case is far more complicated than what this simple model reveals. When there are more than 2

producers in the economy, the dynamics are inevitably more complicated, since the choice set of the agent

is proportional to the number of other producers, whether to produce singly or considering all the other

producers to collaborate. Moreover, once a collaboration occurs between two agents at a certain period, in

the next period, the agents might collaborate with others, and collaborate with each other again in the
6 In Figs. 3 and 4, we take into account the cases where the capability levels of the two producers are the same. Nevertheless,

if the capability of an agent is different from the other, the higher capability agent learns faster and thus increases his/her

knowledge faster. In this case, the conditions for collaboration in the following periods become stricter.
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following period. Also in this section, we took into account the deterministic case. In real world, the extent

of learning is highly uncertain. When such situations are taken into account, the dynamics of knowledge

and dynamics of interaction is too complex to handle with analytical tools. Therefore, we perform an

agent-based simulation study with a higher number of goods, producers and knowledge types.
3. Simulations

3.1. General

In this section, we extend the analysis to incorporate a larger number of producers, goods and knowledge

types, and we carry out a simulation analysis on the resulting interaction patterns among agents.

There are 5 goods, 5 knowledge types, and 50 agents in the economy. Each agent i is endowed with a

knowledge vector, ki assigned randomly (drawn from a uniform distribution, kia [0, 10]) at period t=0;

kis shows the level of agent iVs knowledge in type s. There exist a knowledge type s for all i such that

kisNkit 8t p s.7 Given his/her knowledge vector, each agent in each period produces a good. But an agent
can produce singly, or integrate his/her knowledge with another agent and produce together. If an agent i

produces singly, the probability that he/she will produce good a is equal to the weight of his expertise

type s required by the good.8 We adopt the term a-type agent if the agent produces good a. The amount

that he/she produces singly is given by ya
i as given by Eq. (1).
7 The knowledge setting used here is first introduced by Cowan et al. [20]. Specifically, kis =kjs means that agents i and j have

exactly the same knowledge in type s. If kis Nkjs agent i knows everything that agent j knows in type s, and has some knowledge in

addition.
8 If an agent is expert in type s, and if one of the goods require 90%of s and the other good requires 20%of s, with 0.9 probability he

will produce good 1 and with 0.2 probability he will produce good 2. The intuition behind this is as follows. We try to model an

economy in which optimization in terms of the efficiency of knowledge distribution may not be the case all the time, by making

knowledge distribution stochastic. Any agent who has an expertise does not necessarily work on a field that uses his expertise

intensively. Nevertheless, themore a certain field requires his competence, themore likely that hewill use his competence in this area.



M. Ozman / Technological Forecasting & Social Change 73 (2006) 1121–1143 1131
Each agent, in each period t, selects between producing as single or producing in a pair with another agent.

In making this decision, the agent’s criteria is to maximise his/her output. Therefore, he makes a comparison

between his/her joint output with all other agents in the economy and what he/she will produce alone. Joint

production happens through integration of knowledge of the two agents. When an a-type agent and a b-type

agent form a pair, we assume they produce both goods a and b. It is assumed that if two agents i and j

collaborate (a-type and b-type, respectively), their joint knowledge in category s is given by Eq. (2) which

enters the production function of both goods according to Eq. (1) and shared among them according to

Eq. (3). Therefore, agent i compares his/her single output ya
i with ypaira,b with all other agents. Here, it is

assumed that agents know the knowledge levels of the other agents. Every agent has a preference listing

(other agents ranked according to the maximum output they can produce with him/her). In practice,

pairing in the population is made in such a way that no two agents prefer each other to their current

partners. As different from the marriage problem, where there are two different populations, this is

termed to be the roommate problem, where pairs are formed within a single population [19]. Within a

similar framework as this paper, Cowan et al. [20] utilize this matching algorithm for analysing the

network dynamics resulting from joint innovation by interaction and knowledge integration of agents.

After production, learning takes place according to Eq. (6), pairs dissolve and next period expertise areas

are updated, and new pairs form.

3.2. Relatedness

One of the values that we are interested is the relatedness among two goods. The production

parameters can be used to derive a measure of relatedness. We assume that, the more similar is the

knowledge requirements of two goods, the more related they are. We measure relatedness between two

goods by the cosine of the angle between them.More specifically, the cosine index between two products

a and b is given by;

cosmn ¼
PK

s¼1 cascbsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
s¼1 c2as

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
s¼1 c2bs

q : ð9Þ

Obviously, in the extreme cases cosaa=1, and if there is no common knowledge between the goods,

cosab=0. Other cases fall in between the two extremes. Therefore, high cosine values indicate increased

relatedness between two products, in terms of similarity in their knowledge requirements. The relatedness

between the goods is represented by the symmetric matrix COS(M�M), where cosab gives the cosine

between products a and b.

The model consists of a setting in which all goods have an equal number of knowledge inputs. In other

words, all goods have 3 knowledge inputs. We aim to highlight how the resulting interaction patterns are

influenced when goods use one knowledge intensively, or when they have a more distributed knowledge

base with equal shares of all knowledge types.

As a demonstration, the production parameters are given by Table 1 where the rows and columns

represent goods and knowledge types, respectively, and cas gives the weight of knowledge s in good a.9

Since we assume constant returns to scale, the row sums are one (i.e. c1+c2+c3=1): Also there is one
knowledge type that is more intensively used than the others, c1Nc2 and c1Nc3. The gamma values in
9 In Table 1, we do not use double subscripts for purposes of clarity, since the elements of thematrix represent the same numerical

values.



Table 1

Representation of the matrix of input coefficients

k1 k2 k3 k4 k5

p1 c1 c3 0 0 c2
p2 c2 c1 c3 0 0

p3 0 c2 c1 c3 0

p4 0 0 c2 c1 c3
p5 c3 0 0 c2 c1
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different simulations range between two extreme cases: on one hand, we take the case where the goods

are totally distinct from each other, where they share no knowledge in common. This corresponds to the

case where,

c1 ¼ 1

c2 ¼ c3 ¼ 0: ð10Þ

Corresponding to this case, the COS matrix is given by Table 2.

In the other extreme, we take the case where relatedness is maximum among the products. Therefore,

c1 ¼ c2 ¼ c3 ¼ 1=3: ð11Þ

The corresponding COS matrix is given by Table 3.

The main parameter that is varied in different simulations is the production parameters that are inputs

in the production function (given by Eq. (1) and Table 1). From the production parameters, we derive

measures of relatedness using Eq. (9) computed by the average of the elements of the COS matrix. In

this specification, it is easy to see that as the weight of the major knowledge type falls, the relatedness

between two consecutive goods increase and this is when the goods utilize a more distributed set of

knowledge inputs. On the other hand, increased dominance of the major knowledge type implies that

goods are less related, and we call these goods specialized goods.

3.3. Simulations and network definition

We carry out 40 simulation runs. In each of these runs, a different set of input coefficients is used for

the 5 goods. On one extreme, we have the case given by Eq. (10) and on the other extreme we have the

case given by Eq. (11). In between cases consist of parameters which yield intermediate levels of

relatedness among the products. We present the results with respect to the relatedness measures, which
Table 2

The case of no relatedness in goods, cosine matrix

p1 p2 p3 p4 p5

p1 1 0 0 0 0

p2 0 1 0 0 0

p3 0 0 1 0 0

p4 0 0 0 1 0

p5 0 0 0 0 1



Table 3

Maximum relatedness among goods, cosine matrix

p1 p2 p3 p4 p5

p1 1 2/3 1/3 1/3 2/3

p2 2/3 1 2/3 1/3 1/3

p3 1/3 2/3 1 2/3 1/3

p4 1/3 1/3 2/3 1 2/3

p5 2/3 1/3 1/3 2/3 1
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are derived by taking the average of the cosine matrices that correspond to each set of input coefficients

in different runs.10

In each of the runs there are 10,000 periods. In each period, matching takes place, pairs form and produce

according to Eq. (1) and agents update their knowledge according to Eq. (6). In each period who forms a

pair with who is recorded as an adjacency matrix. We take into account only bilateral link formation in a

single period, but when sufficient time periods elapse, these bilateral links form a network, and a certain

network structure emerges. We consider the results when the network stops changing, i.e. when the

stability in the network is achieved. The results presented below are based on the frequency matrices of

the last 500F10 periods. Therefore, in the final networks, a link between two agents exist when they

have formed a collaboration at least once in the last 500 periods.11

One other option in the construction of the network is to take into account weighted links. We tried the

simulations in this way also, but the major pattern in the results did not change. The reason is that, since the

networks after stability is taken and after sufficient time periods have elapsed, either the same agents

collaborate all the time, or different agents collaborate and form certain cliques or clusters. Therefore, there

is no case in which the collaboration between two agents is once and for all. This observation gives us

confidence about the robustness of the results with respect to the use of weighted or non-weighted links.

The uncertainty parameter di(t)a [0.95, 1.05] and capabilities are hia [0.8, 1.2].12
4. Results

4.1. Network density

Firstly, we looked at the density of the final networks.13 It is given by:

D ¼
PN

i¼1
PN

j¼1 xij

N N � 1ð Þ

10 As an example, in the casewhere c2=0.99 and c1=c3=0.005, even though there is a certain relatedness between two consecutive

goods it is sufficiently small, since only 0.5% of a particular knowledge type is shared between them.
11 In general, it is difficult to construct an exact correspondence between real time and simulation time. Nevertheless, a very rough

measure can be obtained by analysing the average density in the simulations and the number of partnerships constructed by firms per

year in real time. If on the average in a certain industry n partnerships are formed per year per firm, and if m is the density of the

network in the simulations corresponding to the last 500 periods for a population of p firms thanm *p/n will give a roughmeasure of

how many years 500 periods of simulation correspond to.
12 Different parameter ranges were tried to test for the robustness of the results. The results do not change significantly, except that

higher values of uncertainty parameter has the effect of increasing the absolute levels of network density.
13 In the rest of the paper, software UCINET is used for given network measures (Borgatti et al. [21]).
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where xij=1 if there is an edge between agents i and j and 0 otherwise and N is the total number of

nodes.14 The denominator measures total number of available links in the network, and numerator

measures the number of existing links.

Fig. 5 depicts two results. Firstly, there is a clear negative relationship between relatedness and

network density. As the relatedness among the products’ increases, the density of the network falls

(lowest density occurring for the case of Eq. (11) above). Here, the density of the network measures

the variety in the network. In other words, if the same agents form pairs all the time, or if production

occurs mostly singly, network density is low. High network density occurs when different agents form

pairs, which increases the number of links in the network. In this case, we see that highest variety occurs

when there is little relatedness among the products (which means that agents change their partners

frequently).

The second result that can be deduced from Fig. 5 is the discontinuity observed when the products

are totally unrelated, that is the leftmost point (corresponding to the case Eq. (10) above). Here, it is

possible to see that the network density is very low, which means that when the goods are unrelated to

each other, either there is single production (which will reduce network density), or the same agents tend

to form pairs all the time so that there is no variety in the network.15 In other words, all agents will

produce the goods that require most of their own expertise and if they integrate their knowledge, they do

so with agents of the same type.16 This discontinuity is also observed in the remaining parts of the results

below.
14 The matrices upon which density is calculated are derived from the frequency matrices. When there is a link between two

agents, the value is set to 1, otherwise 0. Therefore, an edge between two agents mean that they have formed a pair at least once

in past 500F10 periods. We use the frequency values in the analysis below.
15 In this case, producing singly is higher than other cases.
16 Integrating knowledge with another agent of the same type will require that one agent knows one minor type better and the

other agent knows the other minor type better so that there is still motivation for integration of knowledge.
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4.2. Geodesics

The distance between two agents is the number of the edges in the shortest path connecting them.17

Based on this definition, for all final networks, a geodesic matrix was constructed, where gij shows the

length of the shortest path between i and j. We took the averages of these matrices over all pairs. Fig. 6

shows these measures, firstly when only the nodes that are reachable to each other is taken, and secondly

when all of the nodes in the networks are taken. The figure confirms the reduced interaction among

agents as goods become more related. It is also interesting to note that, as relatedness rises, not only the

geodesic between all pairs increases, but also the average geodesic between only reachable pairs rises.

As it is shown further below, this implies that clustering increases (the case of totally isolated pairs being

the extreme case) as goods become more related.

4.3. Clustering coefficient

Fig. 7 shows the mean clustering coefficient of the network with respect to relatedness. Clustering

coefficient of an agent measures the density of his/her open neighbourhood, and the mean clustering

coefficient of the network is the average clustering coefficient taken over all agents weighed with respect

to the individual degree of an agent.18 Fig. 7 shows that the clustering in the network increases slightly

as relatedness increases. This is largely because when there is a high degree of relatedness among the

goods, the same agents interact, or agents produce singly. This reduces both the density of the network,

and also increases the extent of isolated pairs who collaborate consistently or single producers.
17 If two agents have no path between each other, it means that there are no intermediate agents through which the two agents

are connected. In this case, the distance is taken to be zero. As mentioned above, these values are based on the last 500F10

periods of the simulations, from which we derived the frequency matrices. Basically, these matrices show how many times

during the last 500F10 periods two agents have formed a pair.
18 Degree of an agent is the number of links that the agent has in the network.
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4.4. Knowledge dynamics

In Fig. 8, we present the average knowledge levels over all agents with respect to relatedness. There

is a very high variance in the level of average knowledge levels, which makes it difficult to detect a

certain trend. Nevertheless, relatedness seems to influence expertise levels significantly as Fig. 9

shows.

We measured expertise by the Blau index [22] in the final periods for each run. The weight of

knowledge s in the total amount of knowledge for agent i in all types of knowledge is given by;

wi
s ¼

kisPK
s¼1 k

i
s

The extent to which an agent is a specialist (the extent to which the agent knows a certain knowledge

type more than the others) is measured by;

Expi ¼
1

1�
PK

s¼1 wi
s

� �2�
:

�
As Fig. 9 reveals (showing the average of Expi taken over all agents for each run), expertise level is

highest when the products are completely unrelated (case Eq. (10) above).19 However, it is interesting to

observe that when goods are even slightly related to each other, expertise levels are significantly

lower, and increases thereof. Intuitively, this can be explained by the density pattern as shown in Fig.

5. When the relatedness is low, density is high (which reveals that there is high variety in the

interaction patterns, i.e. different agents form pairs). When this is the case, agents learn in a wider

range of knowledge types, and one of the reasons of variety in pairs is that expertise types also change

more frequently in the population (agents shift their expertise). The average change of expertise is

demonstrated in Fig. 10. Whereas when relatedness is high, same agents join for production so that
19 Because the expertise index is extremely large in this case, it is not shown in Fig. 9.
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the density is low. This implies that they learn in a limited number of knowledge types. This increases

expertise levels in the population.
5. Empirical implications

Above we modeled the goods in an economy which are taking knowledge as competencies and we

looked at the dynamics of networks in a highly abstract simulation model. One of the premises of this
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model is that industries exhibit differences in terms of the composition of knowledge types that are

utilized in production. Although empirical research in this field is limited, there exist some studies which

aim at demonstrating the knowledge-based regime of an industry. Empirically, a rough picture can be

deduced from patent data, by looking at the technology fields corresponding to the patents of different

industries. One of these studies can be found in Patel and Pavitt [23], where they calculate the percentage

shares of different technological activities of 440 large firms in various industries (according to the

percentage of patents), categorized according to the principal product group. These measures are

provided in Table 4.

In a recent study [24], the concept of depth has been developed to measure the extent of

specialization of a good. In this study, the patents are taken to be goods, and the depth of patents in

various technology fields are measured. Fig. 11 shows these measures and their evolution through

time.
Table 4

Percentage of principal product group’s patents in technology field

Principal product group Chem. Non-elec. mc. Elec. Transport Other

Chemicals 71 16.9 8.9 0.6 2.6

Pharmaceuticals 80.2 8 2.1 0 9.7

Mining and petroleum 57.1 34.2 6.7 0.9 1.1

Textiles 52.9 31.7 9.5 0.6 5.3

Rubber and plastics 43.2 29.3 4.7 20.1 2.7

Paper and wood 25.4 47.1 12.4 0.4 14.6

Food 70.6 21.9 3 0.1 4.3

Drink and tobacco 40.8 50.3 4.6 0.3 3.9

Computers 5.2 16.3 77.3 0.2 1

Aircraft 8.1 48.5 31.2 8.3 3.9
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The simulation model presented above is largely abstract in nature, which permits us to apply it to a

wide range of contexts in which the essential argument can be tested. One of these essential arguments as

revealed by our results is that, the density of the networks formed by economic actors is higher when

goods are more specialized. Ozman [24] tests the effect of both specialization levels, and also the breadth

of different knowledge types embodied in patents on networks formed by inventors in a regression

analysis covering the largest 50 firms in biotechnology and telecommunications. According to the

results, both depth of a patent and also the breadth has a significant effect on network density. The more

specialized are the patents, the higher is the density of the networks formed by inventors. These results

point to the importance of complementarities in the knowledge embodiment of patents. The more

specialization brings about less relatedness, but at the same time, increased gains from knowledge

integration among the agents.
6. Discussion and conclusion

According to our results, the knowledge regime in the industry has a significant effect on the

structure and intensity of interactions. One of the results that both our simulations and analytical

model reveal is that collaboration takes place when there are gains from knowledge integration, which

depends on the structure of goods. In a two-producer, two-good economy, the more specialized are the

products (and thus the less related they are), the more important it becomes to have similar expertise

levels for each party to benefit from collaboration, so that there are less possibilities for collaboration

when agents are too far apart in terms of their endowments. Contrarily, when there are many

producers, specialization of the goods results in intensive interactions among various pairs since there

are many partners to select from so that different agents form pairs mostly (which increases the

density of the network). Therefore, the restrictions of the two-producer economy is not valid. Also in

this case, variety in the pairs results in agents who learn in a diverse range of fields, which reduces

expertise and results in a population in which knowledge is more distributed. When this is the case,

the fields that agents know most about also change frequently, which increases the density of the

network. Although weakly, we can also infer that knowledge levels tend to fall as relatedness

increases which might be because of lower density in the network. This lower density also implies that
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clustering in the network increases, which is to say that the same agents form pairs consistently, or

single production prevails.

These results point to the importance of complementarities among products, and their implications for

collaboration patterns. According to Mowery et al. [11] there is an inverted-u relation between cognitive

distance among actors and gains from integration. They carry out an empirical study to show that if the

knowledge overlap is too high among firms, there is nothing to be gained. If too distant, there is limited

cognitive ability to understand. In this paper, we consider the structure of the goods explicitly, and explain

how the distance between two goods in knowledge space is mapped onto the interactions among agents

who embody the knowledge the produce these goods. We find that when the goods are too similar, there is

hardly any benefits from collaboration. When they are not related at all, there is also no benefit from

collaborating. Only when there is a low degree of relatedness, so that a major input in one good is only

minor in the others, do we see high benefits from integration of knowledge and high network density.

These results have direct bearing on the innovation policies. Innovation policies directed towards

deepening of the knowledge base (so that the products become more specialized in their composition of

certain inputs) increases the intensity of interactions, the average knowledge levels, and also it results in

a more distributed knowledge among producers.

Obviously, there are many factors other than the knowledge base that influence networks as a

growing literature reveals, ranging from institutional factors, stage in the industry life cycle, demand

side effects, cost considerations, firm strategies and many more. Nevertheless, in a world in which

knowledge is in the core of both business and academia, and in which networks are the main

mechanism through which knowledge diffuses, the impact of knowledge bases on network structure

deserves a central role.
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Appendix A

Proof of Proposition 1. To be able to find this, we need to look at the indifference function for

both producers, which shows the critical production levels at which the producers are indifferent

between producing singleton or together. Let us consider producer 1 first. The indifference equation

is given by

k
c11
11 k

c12
12|{z}

producer 1; good 1; singleton

¼ 1

2
½ kc11

11 k
c12
22|{z}

paired; good 1

þ k
c21
11 k

c22
22|{z}

paired; good 2

�: ð12Þ

In the same way, indifference condition for producer 2 is given by

k
c21
21 k

c22
22|{z}

producer 2; good 2; singleton

¼ 1

2
½ kc11

11 k
c12
22|{z}

paired; good 1

þ k
c21
11 k

c22
22|{z}

paired; good 2

�
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Rearranging terms for producer 1, we get the following indifference condition

k
c11
11 k

c12
22 � k

c11
11 k

c12
12 ¼ k

c11
11 k

c12
12 � k

c21
11 k

c22
22

The interpretation of the equation is straightforward, which represents the trade-off faced by producer 1.

The LHS shows the net gain in producing good 1 as a pair. This is equal to producing good 1 as a pair,

less the opportunity cost which is producing good 1 singleton. The RHS shows, on other hand, the net

loss from producing as a pair. This is equivalent to what producer 1 could have produced singleton, less

the additional good 2 he gets by collaborating. If the RHS of Eq. (12) is greater then the LHS, producer

will prefer singleton. Therefore, the condition for collaboration is given by

k
c11
11 k

c12
12 b

k
c11
11 k

c12
22 þ k

c21
11 k

c22
22

2

Rearranging terms we get the condition for producer 1’s willingness to collaborate:

k11b
2k

1�c11ð Þ
12 � k

1�c11ð Þ
22

k
c22
22

!1= 1�c11�c22ð Þ

:

0
@

5

Proof of Proposition 3. In this case, the new knowledge levels are

k11 tð Þ ¼ k11 t � 1ð Þ 1þ h=2
k22 t � 1ð Þ
k11 t � 1ð Þ

� 	c12

þ k22 t � 1ð Þ
k11 t � 1ð Þ

� 	c22
� 	� �

k22 tð Þ ¼ k22 t � 1ð Þ 1þ h=2
k11 t � 1ð Þ
k22 t � 1ð Þ

� 	c11

þ k11 t � 1ð Þ
k22 t � 1ð Þ

� 	c21
� 	� �

k12 tð Þ ¼ k12 t � 1ð Þ 1þ h=2
k

c11
11 t � 1ð Þ
k

c11
22 t � 1ð Þ

þ k
c21
11 t � 1ð Þ
k

c21
22 t � 1ð Þ

� 	� �
ð13Þ

setting n=h / 2
k

c11
11

t�1ð Þ
k

c11
22

t�1ð Þ þ
k

c21
11

t�1ð Þ
k

c21
22

t�1ð Þ

��
and m=h / 2 k22 t�1ð Þ

k11 t�1ð Þ

�c12 þ k22 t�1ð Þ
k11 t�1ð Þ

�c22
� ���

and inserting these into

the condition stated by Proposition 1 and rearranging terms we get

k
1�c11�c12
11 1þ Dmð Þ1�c11�c12N

2k
1�c11
12 1þ Dnð Þ1�c11

k
c22
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and

k
1�c11�c12
11 N

2k
1�c11
12 1þ Dnð Þ1�c11�c22

k
c22
22 1þ Dmð Þ1�c11�c12

� k
1�c11�c22
22 1þ Dnð Þ1�c11�c12
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yields

k
1�c11�c12
11 t � 1ð ÞN 2k

1�c11
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k

c22
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where

w ¼
1þ h k22

k11

� ��c11 þ k22
k11

� �c22�1
� �� 	1�c11�c22

1þ h k22
k11

� ��c11 þ k22
k11

� ��c22
h i� �1�c11�c22

:
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