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This article examines the relationship between the structure of intra-firm inventor net-
works and the technological diversity of firms. We test this relationship for a panel of
222 firms in the ICT sector for the period 1995–2003, by utilizing data on their granted
patents. The results reveal that the relation between the strength of ties between inven-
tors in R&D teams and the firms’ technological diversity is curvilinear. In other words,
while strong ties between inventors can promote diversity, there is a limit to this positive
effect. After this limit, strong ties can inhibit diversity, possibly by limiting the capabil-
ities of network members to process novelty. In addition, we find that the impact of the
scale-free metric on technological diversity is negative.

Keywords: ICTs; intra-firm network; technological diversity; innovation; scale-free
network

1. Introduction
The history of technological change is full of examples in which a radical innovation is the
result of the recombination of previously existing, but disparate knowledge in novel ways
(Bassala 1988). Recombination is seen as essential in the innovation process through the
lens of an evolutionary view of the industrial system (Schumpeter 1934; Nelson and Winter
1982). In this context, variety in the knowledge base is the most essential part of innovation
since it determines the range of possible reconfigurations that knowledge can be put. The
positive impact of variety on innovation has been well documented in previous research. As
far as variety in an organization is concerned, previous studies focused on firms’ strategic
– and thus deliberate – initiatives to maintain variety, as in technological diversification
(Granstrand, Patel, and Pavitt 1997; Cantwell and Santangelo 2006; Hyukjoon, Hyojeong,
and Yongtae 2009). On the other hand, the impact of inventors’ patterns of collaboration on
diversity, while highlighted theoretically, has not been empirically verified. It is important
to underline the difference between technological diversification, as a deliberate strategy,
and technological diversity, as an emergent property. In this article, technological diversity
is taken as an emergent outcome of the structure of interaction patterns between inventors.
Therefore, understanding the role of intra-firm networks is important especially in forming
and coordinating research teams, in a managerial context.
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162 G. Cecere and M. Ozman

The aim of the present article is to explore the ways in which the structure of intra-firm
inventor networks shape the technological diversity in firms’ R&D output, as measured
by their patents. We focus on the ICT sector, which is characterized by a wide and het-
erogeneous knowledge base and rapid rate of innovation, which makes it one of the most
interesting sectors to explore technological diversity in an organizational context. We use
a panel data of patents on 222 firms that were observed over a nine-year period, from 1995
until 2003, retrieved from the UK-DTI R&D database. The data-set includes the top ICT
international companies by their technical competences measured by R&D intensity and
patenting propensity. The article is organized as follows. Section 2 presents the theoretical
background. Section 3 details the method and data used in the study. Section 4 analyzes the
results, followed by some concluding remarks.

2. Background and hypotheses
One of the building blocks of innovation is variety. Termed as ‘recombinant growth’ by
Weitzman (1998), it is accepted that the probability of innovation is higher when there is
more variety to be recombined. Here, variety is taken as diversity in an innovating organi-
zation, which is reflected in the breadth of fields in its R&D output. Miner, Haunschild, and
Schwab (2003) term this as ‘categorical variety’ where firms differ in types and distributions
of their categorical entities (technological fields in this case). Variety exists in a localized
context where the knowledge base of the firm expands in technologically proximate fields
and where firm integrates and combines its internal knowledge and the knowledge close to
their boundaries (Antonelli 2006).

In this section, first the role of technological diversity in innovation is explored. Second,
the importance of intra-firm inventor networks in innovation activities is presented. The
literature is well established concerning these two themes. On the other hand, the impact of
intra-firm networks on diversity, which is the subject of this article, is yet to be developed.
Figure 1 summarizes the positioning of this article within the existing literature.

In Figure 1, themes (1) and (2) show that both technological diversity and intra-firm net-
works affect innovation. Theme (3) shows the relation between technological diversity and
intra-firm networks and indicates that the causality can be taken in two directions. First, stud-
ies in organization theory posit that technological diversification strategies have an impact on
the organization structure, mainly through divisionalization within the firm (Argyres 1996;
Cantwell and Santangelo 2006). Second, according to social network theories, the structure
of networks shapes technological diversity. For example, repeated exchanges between the
same inventors or a highly clustered network can result in knowledge convergence, thus
reducing technological diversity (Nelson 1989; Milliken, Bartel, and Kurtzberg 2003). In
this paper, we emphasize such emergent nature of inventor interactions and how it shapes
the research output of firms.

2.1. Technological diversity and innovation performance
In management studies, one of the questions that have attracted significant attention is con-
cerned with the effects of diversity on firm performance (Harrison and Klein 2007; Williams
and O’Reilly 1998). There is a strand of literature which shows that technological diver-
sity can increase the innovative potential (Fleming 2002; Garcia-Vega 2006; Miller, Fern,
and Cardinal 2007; Quintana-Garcia and Benavides-Velasco 2008) through maintaining the
availability of a broader set of alternative recombination paths (Weitzman 1998; Fleming
2002; Carnabuci and Bruggeman 2009). Nevertheless, some studies find that the level of
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Economics of Innovation and New Technology 163

Figure 1. Innovation, intra-firm networks and diversity.

diversity is critical. While too little diversity can be beneficial for economies of scale, it
creates few opportunities for recombination (van den Bergh 2008). On the other hand, too
much diversity increases the costs of coordination and may lead to reduced opportunities
for innovation (Leten, Belderbos, and Van Looy 2007). Therefore, technological diversity
does not always imply that variety inside the firm is effectively shared, recombined and
could be put into new products.

While the importance of diversity on innovation is well documented, few studies investi-
gate the determinants of technological diversity, as an emergent aspect of intra-firm networks
(c.f. theme (3) in Figure 1). At the same time, technological diversification, which can be
seen as a deliberate strategy to create and maintain variety (Granstrand, Patel, and Pavitt
1997), has been studied commonly. Among these deliberate strategies, one can consider
external alliances and acquisitions (Cantwell and Santangelo 2006; Nooteboom et al. 2007;
Sampson 2007). In addition, a range of human resource practices are shown to gener-
ate variety internally, as job rotation (Un 2007) and R&D management between different
business units in large organizations (Birkinshaw 2002; Argyres and Silverman 2004).
As far as the impact of technological diversification on intra-firm organization is con-
cerned, Argyres (1996) finds that technological diversification reduces divisionalization in
companies, because of increased transaction costs of coordinating a diverse range of tasks.

2.2. Intra-firm networks, innovation and technological diversity
Since 1960s, the network approach has been widely adopted in organization studies (Allen
and Cohen 1969; Allen 1977; Tichy, Tushman, and Fombrun 1979) to understand how
knowledge is created, recombined and disseminated within an organizational context. The
characteristics of knowledge (Hansen 1999, 2001) as well as the positions of actors in
the network (Tushman and Romanelli 1983; Nerkar and Paruchiri 2005; Singh, Hansen,
and Podolny 2010) are found to have an effect on innovative performance of a firm and
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164 G. Cecere and M. Ozman

the literature explores different dimensions of this effect. Some studies emphasize the
importance of boundary spanning actors bringing knowledge to a unit from outside (Allen
and Cohen 1969; Tortoriello and Krackhardt 2010) and some others investigate how net-
works relate to patterns of information seeking in organizations (Cross and Borgatti 2004;
Singh, Hansen, and Podolny 2010).

Relational embeddedness emphasizes the qualitative aspects of relations among net-
work members. It encompasses the strength of ties among network members which can
be measured by the extent to which ties are repeated between them (Reagans and McEvily
2003). This aspect of relations, which is sometimes referred to as ‘network closure’, empha-
sizes the role of a dense network structure in facilitating the development of mutual trust,
identification with the group and hence fostering common initiatives (Coleman 1988; Rea-
gans and Zuckerman 2001). Strong ties enable thick information exchange and they are
considered to be better in deepening the knowledge of network members in specific areas
(Rowley, Behrens, and Krackhardt 2000; Uzzi 1997). Moreover, strong ties also have the
effect of reducing fears of opportunistic behavior and motivate cooperation among net-
work members. Based on these, they are usually considered to have a positive impact on
intellectual capital in an organization (Nahapiet and Ghoshal 1998).

Co-invention patterns between inventors are commonly used to measure knowledge
exchanges between them (Balconi, Breschi, and Lissoni 2004; Ejermo and Karlsson 2006).
Most of the inventions are made by teams of researchers, complementing their knowledge
through collaboration. Inventor teams are usually characterized by mutual interactive learn-
ing, transfer of both tacit and explicit knowledge, heuristic and recursive problem solving
processes, in which frequent and close interactions are needed. These processes have an
important role in fostering creativity in joint research. Because of their positive impact in
fostering communication and generation of new ideas, we expect to find a positive asso-
ciation between tie strength and technological diversity in an organization. Despite their
positive impact, one of the implications of such repeated/strong ties can also be convergence
of members in terms of their knowledge endowments, thus reducing diversity (Cowan and
Jonard 2001). Stated differently, repeated exchanges between the same people can have a
diminishing returns effect in terms of the added value to knowledge creation (McFadyen and
Cannella 2004). For example, in social psychological theories, one of the negative impacts
of increased cohesion within a group has been found to be members’ reduced abilities to
process novelties (Janis 1972; Milliken, Bartel, and Kurtzberg 2003; Nelson 1989). In the
case of multitechnology firms, leveraging variety effectively can be hampered through such
repeated collaborations, preventing diverse areas of specialization to form synergies with
each other. Based on this framework, it can be argued that there is an inverted-u relationship
between strength of ties between inventors and technological diversity.

Hypothesis 1: There is a curvilinear relation between the strength of ties between inventors in
a firm and the firm’s technological diversity.

The impact of tie strength on diversity can be better understood if we take into account
the number of distinct teams in an organization. Figure 2 shows two networks with the same
total number of nodes and ties and the same tie strength between members. The difference
between the two networks is concerned with the existence of three components in network
1. On the other hand, network 2 is composed of a single component, in which all nodes are
reachable from all other nodes. The notion of component used here refers to a subgroup
in the network, whereby all nodes in one component are connected directly or through
intermediaries, and there is no other node in the rest of the network in which the nodes of the
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Economics of Innovation and New Technology 165

Figure 2. Tie strength and number of components.

component are connected to. Consequently, the lack of ties between such components may
limit the diffusion of knowledge between inventors. In this case, technological diversity
is expected to be higher when there are a higher number of inventor components in the
network.

Hypothesis 2: There is a positive relation between number of inventor components in a firm
and its technological diversity.

An interaction effect between number of inventor components and strength of ties within
components is likely to exist. In particular, it can be argued that the stronger the intra-
component ties, and the higher the number of components, the less will be technological
diversity. This is the case when an increasing number of strongly embedded, yet unconnected
teams lead to coordination problems, resulting in redundancy – or repetition – of research
efforts in different parts of the network. In other words, technological diversity may be
hampered when there are too many strongly connected teams, which are not connected to
each other.

Hypothesis 3: There is a negative interaction effect between the number of inventor components
and tie strength between inventors as far as their impact on diversity is concerned.

2.3. Scale-free networks and diversity
In addition to the network measures explained above, we also investigate the impact of hubs
on technological diversity. A scale-free network is characterized by a very high degree of tie
asymmetry. In other words, a small number of nodes have very high number of connections,
while the majority of the nodes in the network are connected to few others. A network
is termed as scale free when the frequency distribution of its degrees follows a power
law distribution (Barabasi and Albert 2000; Solla de Price 1965). One of the mechanisms
which have been shown to yield a scale-free network is preferential attachment, whereby
highly connected nodes are more likely to attract more linkages, as the network grows.
In the literature, the impact of a scale-free network structure has been studied under two
general frameworks. The first one is related with the resilience of scale-free networks.
While scale-free networks exhibit high resilience to random accidents (Cohen et al. 2000),
their performance is quite low in terms of vulnerability to targeted attacks. The second
framework is concerned with diffusion, mainly carried out within the context of epidemics
and knowledge diffusion. It is found that scale-free networks result in faster diffusion in the
system (Lin and Li 2010).
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166 G. Cecere and M. Ozman

While a preferential attachment mechanism results in a scale-free network, it is not a
necessary condition for the emergence of a power law degree distribution. Li et al. (2005)
propose a metric which measures the extent to which a network is scale free. In doing so,
they define a spectrum, the opposite ends of which are a scale-rich network and scale-free
network. Their conceptualization of scale-free network is based on the extent to which
highly connected nodes are connected to other highly connected nodes. On the other hand,
a scale-rich network corresponds to one in which nodes are similar to each other in terms
of their degrees, lacking significant differences in terms of their connection patterns. In
this paper, we utilize this scale-free metric to investigate the impact of scale freeness of an
inventor network on technological diversity. In other words, the metric measures the extent
to which the degree distribution of a network is asymmetric.

The speed of knowledge diffusion in a network is likely to influence the network’s
capacity to maintain diversity. Fast knowledge diffusion can result in network members’
becoming increasingly similar to each other, thus reducing the network’s potential to
maintain diversity. Accordingly, we propose that:

Hypothesis 4: There is a negative relation between the scale-free metric of a firm and its
technological diversity.

3. Method and data
The foregoing hypotheses are tested by using a sample of firms in the ICT sector. ICT sector
is one of the fastest growing sectors of the economy, accompanied by rich opportunities for
technical change, as also revealed by the increasing number of patent applications during the
recent decade (Corrocher, Malerba, and Montobbio 2007). Several features of this industry
make it a suitable framework for this study. In the ICT sector, the main input in production
is knowledge. Because knowledge can be inexpensively reproduced (expansible) and it is
non-rival (its use by one party does not exclude others from using it), an original design can
be reused in meeting different markets, which is a source of economies of scope (Steinmuller
2007). In other words, economies of scope in ICTs stems from the ability to ‘address different
application needs with the same designs’ (Steinmuller 2007, 198). This creates important
opportunities in the industry for the existence of a diverse range of knowledge and products.
This variety is also one of the factors which shape the heterogeneous industrial architecture,
giving rise to small and specialized firms alongside established ones, as well as a large
number of universities and research centers (Corrocher, Malerba, and Montobbio 2007).

The coexistence of established firms and young firms and the diverse knowledge base
of the industry augment the propensity of innovation through recombination (Koumpis and
Pavitt 1999) and suggest increased technological diversity at the firm level (Granstrand,
Patel, and Pavitt 1997; Mendonca 2006; Patel and Pavitt 1997). Finally, ICTs are considered
to be general purpose technologies (Bresnahan and Trajtenberg 1995) which provide a
suitable basis upon which a very diverse range of fields can be incorporated (Koumpis and
Pavitt 1999).

3.1. Data
The primary goal of this article is to analyze how technological diversity at the firm level
relates to the structure of networks formed by inventors. We constructed a unique database
which includes all ICT firms classified in the UK-DTI R&D database (BIS – Department for
Business Innovation and Skills). We retrieved data on the top worldwide ICT firms during
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Economics of Innovation and New Technology 167

the period 1995–2003. The DTI database collects detailed data on the R&D expenditures of
these firms. Therefore, the sample consists of a set of big firms, where the smallest firm has
around 500 employees and the largest one has 477,100 employees. The database includes
222 firms, operating in electronics, telecommunications and computer sectors, with high
technical competences (jointly considering R&D and patent counts). The data-set includes
the patents granted to these firms by the US Patent and Trademark Office (USPTO), which
were retrieved using the Worldwide Patent Statistical Database (PATSTAT). In this way,
we included a total of 349,070 patents granted to these firms during the period 1995–2003.

Although patents are usually considered to be a good source of measuring innovation
output, patent data have some limitations (Griliches 1990; Silverman 1999). There is a part
of technical knowledge which might remain unpatented, either because it is not patentable
or because a firm may strategically keep it secret. Further analysis of data revealed that
firms which are in the range of highest R&D spending are not necessarily the ones with
the highest propensity to patent. Therefore, we included only the firms with high patenting
propensity.

3.1.1. Dependent variable: technological diversity
By using the information related to the International Patent Classification (IPC) codes,1 each
patent in the data-set was allocated into one of the 30 main technology fields (Schmoch
2008).2 A technologically diverse firm will have a patent portfolio covering a wider range
of technology fields, compared with a specialized firm. The technological diversity of firm
i in period t is measured by the Blau Index (1977) which was originally used to measure
diversity in population studies

Divit = 1 −
∑

k

q2
ik ,

where Divit is the technological diversity of firm i in period t and qik is the proportion of
technology field k in all the patents granted to the firm in period t.

3.1.2. 3.1.2 Independent variables
Three network measures were computed: tie strength (RT), the number of distinct inventor
components (NbC) and the scale-free metric (ScaleFree). The networks are constructed for
a two-year period in the following way. A link between two inventors exists if their names
have appeared together at least once in a two-year period.

Hypotheses 2 is concerned with the number of disconnected components of inventors.
Here, a component is defined as a group where all the members are reachable by the other
members of the group, directly or through intermediaries. For each firm and every two
years, the number of inventor components is computed (NbCit).3

Hypotheses 1 and 3 are concerned with the strength of ties between inventors (RTit).
Strength is measured by the extent to which the same inventor names appear in different
patent documents. The weight of tie strength is measured as a percentage of total ties.
Formally, it is measured in the following way:

RTit,t−1 =

(∑N
i=1

∑N
j=1 rij

)
− T

∑N
i=1

∑N
j=1 rij

,

where rij is the total number of times inventors i and j have collaborated in years t and t − 1
and T is the total number of links in the network during the same period. In this way, the
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168 G. Cecere and M. Ozman

variable is normalized with respect to the total number of pairs in the network, given by
T . This normalization is necessary to be able to standardize the measure corresponding to
firms with different sizes.

Hypothesis 4 is concerned with the scale-free metric. Li et al. (2005) propose the fol-
lowing metric to measure the extent to which a network is scale free. For firm i, and for
each connected inventor j and k

ScaleFreei =
∑N

j=1
∑N

k=1 djdk

max(ScaleFreeN )
,

where dj and dk refer to the number of connections of j and k respectively, and N is the total
number of inventors in the network. The denominator of the metric gives the maximum
possible value of the metric, with the given degree distribution of nodes in the network. In
other words, it connotes the maximum possible value of the metric, had the given degree
distribution of the network characterized a network in which highest degree nodes were
connected to other highest node degrees. Li et al. (2005) show that relatively high values
of scale-free metric characterize networks with a hub-like core structure, where hubs play
an important role in the overall connectivity of the network.

3.1.3. Control variables
In order to control for alternative determinants of technological diversity, a set of control
variables are used.

R&D expenditure. The intensity of research effort is used as a proxy of innovative
activities of firms. We include the annual R&D expenditure of each firm in millions of
pounds and we instrument the variable considering the one-year lagged R&D expenditure.
In this paper, R&D expenses control for the effect of firm size, as all firms in our sample
has a high level of R&D expenditure. We expect to have a negative sign of these covariates.
Smaller firms can have more willingness to exchange internal information. Larger firms are
expected to have more financial means with respect to smaller firms. However, large firms
can have operational rigidities, which may hamper the explorative activities as well as the
coordination of research teams. We include the deflated stock of R&D expenditure4 which
measures the accumulated R&D efforts over time, stocks influence the profitability and the
value of the firms.

Other organizational variables. Organizational variables can also affect the technologi-
cal diversity of firms, and for this reason, different organizational time-unvarying regressors
are added into the estimation. We include dummy variables indicating the company head-
quarters which take into account the difference among the different continents; namely
Europe (EU), USA (US), Japan (JAPAN) and other countries (OTHER). The reference
variable in the regression is the dummy variable OTHER. These set of variables may
account for different corporate strategies. Particularly, the well-known ‘American’ corpo-
rate model followed by US firms is characterized by the capability to accumulate and take
advantage of internal stocks of existing knowledge which is the result of effective central
coordination and hierarchical implementation. For those firms, diversity allows to firm to
widen the scope of knowledge applications, enabling recombination process (Antonelli,
Kraft, and Quatrato 2010).

For each firm, we collected information on the age of the firms and on the industrial
classification code. We include in the regression the variable age – AGE (we add the variable
in square to control the overdispersion – AGESQ). We expect that older firms have higher
capabilities to manage diversity in internal knowledge as they have more experience on the
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Table 1. Detailed data on firms by segment.

Variable Firms Examples

Professional, scientific and technical
services

NAICS 541 30 3COM, Nvidia, Redback
Network and Telstra

Computer and electronic product
manufacturing

NAICS 334 91 Dell, Apple, Cisco, L3
communications, Nokia
and LG Electronics

Office machinery manufacturing and
printing and related support activities

NAICS 33 23 Dainippon Screen MFG,
Avid Technology and
Xerox

Producing and distributing information
and cultural products; transmis-
sion and processing of data or
communications

NAICS 511-8 27 I2 Technologies, Adobe
System and Oracle

Professional, scientific and technical
services

Other−NAICS 51 Minolta, IBM and
Macronix International

NAICS, North American Industry Classification System.

Table 2. Definitions of dependent and independent variables.

Variable Description

Dependent
Diversity – Divit Measured by a single Blau Index for the pool of patents

taken by the firm in a specific year
Independent variables
Number of components (log NbCit) Log of the number of components based on the networks

constructed every two years
Tie strength (RTit) The weight of strength of ties in the network measured

the repeated link between inventors. Networks are
constructed by taking into account patents of two-year
periods

ScaleFreeit Measures the extent to which intra-firm networks are
scale free

AGEi Based on the establishment year of the firm
Country of origin Based on the country of origin of the firm
RDit−1 Natural log of the R&D investment in time t − 1 in £m
Stock R&Dit The deflated stock of R&D variable in time t in £m
NAICS 541, NAICS 334, NAICS 33,

NAICS 511-8 and Other−NAICS
Industrial segment of the firm

NAICS, North American Industry Classification System.

other hand, thus we expect a negative sign for the coefficient of the variable AGE. In addition,
to control for industry differences we included a set of dummy variables based on the firms’
three-digit NAICS code as it might be possible that firms behave differently according to
their industry segment. Table 1 presents some information on the firms presented in our
sample, it shows that computer and electronic product manufacturing (91 firms) are the
largest group of firms and the smallest group is represented by the group of firms belonging
to Office Machinery Manufacturing and Printing and Related Support Activities sector (23
firms). Additionally, all regressions include year dummies to capture the exogenous change
in the competition environment of the firms.

Table 2 summarizes the dependent variable and the independent variables. Table 3
presents some descriptive statistics.

D
ow

nl
oa

de
d 

by
 [1

29
.1

75
.1

68
.5

1]
 a

t 0
3:

43
 0

5 
M

ar
ch

 2
01

4 



170 G. Cecere and M. Ozman

Table 3. Descriptive statistics.

Variable Obs. Mean Std. dev. Min Max

Divit 1282 0.6049672 0.2276466 0 0.9095884
RTit 1282 0.2661976 0.1521364 0 0.875
RTsqit 1282 0.0939886 0.0987533 0 0.765625
RTit (mean) 1282 0.2726541 0.1037576 0.0139096 0.5865568
RTsqit (mean) 1282 0.0995222 0.0648916 0.0004548 0.3673618
Log NbCit 1282 2.925677 1.444602 0 6.380123
Log NbCit (mean) 1282 0.8299967 0.6125036 0 3.721418
ScaleFreeit 1282 0.3087539 0.3107587 0.0019558 1
ScaleFreeit (mean) 1282 0.3093068 0.2389089 0.0136782 0.9903253
Stock R&Dit−1 1282 5.876066 1.683882 1.1619 9.973317
Stock R&Dit−1 (mean) 1282 5.878582 1.475371 2.656824 9.097918
AGE 1282 52.8869 36.35393 8 163
AGESQ 1282 4117.601 5338.75 64 26569
USA 1282 0.5904836 0.4919365 0 1
EU 1282 0.1123245 0.3158885 0 1
JAPAN 1282 0.2535101 0.4351902 0 1
NAICS541 1282 0.1170047 0.3215513 0 1
NAICS334 1282 0.4134165 0.4926384 0 1
NAICS33 1282 0.1115445 0.314928 0 1
NAICS511-8 1282 0.1107644 0.3139627 0 1

NAICS, North American Industry Classification System.

3.2. Method
The model is estimated using the ordinary least squares (OLS) command. The Hausman test
was significant, showing that there is correlation between the explanatory variables and the
unobserved effects. However, Mundlak (1978) pointed out that there is no justification for
treating the individual effects as being uncorrelated with the other regressors. It is important
to take into account this correlation, since it may lead to inconsistency in estimators due to
omitted variables (Hausman and Taylor 1981). To control for unobserved individual effects,
while also including explanatory variables, we introduced a second specification, which
is the Mundlak–Chamberlain (Mundlak 1978; Chamberlain 1984) random effects model.
Mundlak’s method (1978) is commonly used in the estimations of unbalanced panels. This
model assumes that the correlation between the unobservable firm characteristics and the
exogenous variables acts only through their time averages, which permits controlling for
unobserved heterogeneity. Mundlak’s method requires calculating the within individual
mean of explanatory variables. To control for the possible correlation between observed
heterogeneity and explanatory variables, we estimate Chamberlain–Mundlak model. In
order to test the above-mentioned hypothesis, the regressions are specified as follows:

Divit = β0 + β1RTit + β2RTsqit + β3ci + β4mi + δi + εit , (Model a)

Divit = β0 + β1RTit + β2RTit
∗NbCit + β3ci + β4mi + δi + εit , (Model b)

Divit = β0 + β1ScaleFreeit + β2ci + β4mi + δi + εit , (Model c)

with Divit being the technological diversity index, where i and t indicate, respectively,
the firms and the time period, and εit represents the error which is assumed to satisfy the
usual regression model conditions. NbCit and RTit refer, respectively, to the number of
components and tie strength. The variable ScaleFreeit measures the extent to which intra-
firm network is characterized by scale-free structure. δi denotes the random effect for ith firm
and it considers the firm-specific heterogeneity. Additionally, the Mundlak–Chamberlain
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specifications introduce the mean of time-varying variables. In addition, mi represents the
average value of the all time-varying variable of firm i (the variable RDit−i namely the
firm i’s R&D expenditure in year t − 1). And, Ci includes the set of firm’s time-unvarying
variables (age of the firms, the geographical location of the headquarter and so forth).

4. Results
Tables 4 and 5 present the results of the estimations with cluster–robust estimators at firm
level. Table 4 includes models with tie repetition and number of clusters. Table 5 includes the
results with scale-free metric as the independent variable. We estimate three set of models
with different specifications in order to test the robustness of our results. In particular, the
specifications (2–3), (5–6) and (8–9) include the mean of time-varying variable (using the
Mundlak–Chamberlain method) in order to capture the unobserved effects associated with
the explanatory variables.5 By definition it is assumed that these are associated with the
ability of firms to diversify their knowledge. The coefficients remain significant when we
control for unobserved individual-specific effects.

The specifications 4–6 confirm our expectation of a curvilinear relation between tie
strength and technological diversity. While strong ties can foster generation of new ideas
and thus have a positive impact on diversity, they can also have a negative impact. Intuitively,
this negative effect can be the result of knowledge convergence among inventors, in terms
of their common knowledge endowments, limiting their potential for generating variety in
research output. In social network theories, the negative impact of increasingly cohesive ties
on processing novelty has been documented before (Nelson 1989). While our regression
results permit to offer such an intuitive result, case studies at the firm or team level could
be very useful in verifying this interpretation.

The regressions 1–3 show that there is a significant positive relation between number
of components and diversity, which confirms Hypothesis 2. The number of inventor com-
ponents in the network is reflected in the firms’ research output as a higher diversity in the
technology fields encompassed. However, this result should be interpreted with caution and
together with the interaction effect between tie strength and number of components.

The significant and negative interaction effect between tie strength and the number of
components in models 1–3 reveals that, there exist a critical number of components above
which the impact of tie strength on diversity becomes negative. Before this critical level,
increasing the number of components may still increase diversity, albeit at decreasing rates
depending on tie strength. In other words, as number of unconnected inventor compo-
nents increases, greater tie strength within components will start reducing diversity at one
point. Coordinating the research activities of diverse teams can bring forth redundancy in
research activities, if different inventor teams work on similar technological fields, yet when
the coordination is poor between them. In addition, as the links between the members of
existing teams get stronger, the inter-team relations might weaken, further contributing to
the problem of coordination.

Building strongly connected teams can be accompanied by establishing linkages
between these teams (in other words, reducing number of isolated components) if firms
want to promote diversity. This can be realized through assigning inventors to bridging
positions between different teams. At the same time, if organizational constraints necessi-
tate the existence of a high number of isolated teams, then avoiding the teams to be too
much embedded in their current networks can promote diversity. This can be realized, for
example, by forming inventor teams in once and for all projects, or implementing programs
like job rotations.
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Table 4. OLS panel regression: dependent variable technological diversity and independent
variables RT and NbC.

Model a Model a Model b Model b
Model a M. C. M. C. Stock Model b M. C. M. C. Stock
R&D (1) R&D (2) R&D (3) R&D (4) R&D (5) R&D (6)

RTit 0.300∗∗∗ 0.284∗∗∗ 0.288∗∗∗ 0.504∗∗∗ 0.394∗∗∗ 0.407∗∗∗
(0.077) (0.082) (0.083) (0.121) (0.122) (0.124)

Log NbCit 0.115∗∗∗ 0.101∗∗∗ 0.107∗∗∗
(0.013) (0.016) (0.107)

RDit−1 0.011 0.030∗∗ 0.055∗∗∗ 0.046∗∗∗
(0.009) (0.012) (0.007) (0.012)

RTit∗log NbCit −0.130∗∗∗ −0.128∗∗∗ −0.133∗∗∗
(0.030) (0.031) (0.032)

RDit (mean) 0.271 0.275 1.284∗∗∗ 1.273∗∗∗
(0.169) (0.171) (0.290) (0.290)

Stock R&Dit−1 0.015 0.022
(0.011) (0.014)

RTsqit −0.652∗∗∗ −0.522∗∗∗ −0.554∗∗∗
(0.162) (0.159) (0.162)

RDit−1 (mean) −0.053∗∗∗ −0.015
(0.018) (0.015)

RTit∗log NbCit
(mean)

−0.073 −0.072
(0.058) (0.058)

Log NbCit
(mean)

0.044∗ 0.036
(0.022) (0.022)

Stock R&Dit−1
(mean)

−0.034∗ 0.004
(0.019) (0.018)

RTsqit (mean) −1.773∗∗∗ −1.745∗∗∗
(0.431) (0.430)

AGE 0.002∗ 0.002∗ 0.002∗ 0.002∗
(0.001) (0.001) (0.001) (0.001)

AGESQ −0.000∗ −0.000∗ −0.000∗ −0.000
(0.000) (0.000) (0.000) (0.000)

USA −0.051 −0.051 −0.078∗ −0.084∗∗
(0.039) (0.038) (0.040) (0.041)

EU 0.038 0.030 −0.001 −0.014
(0.048) (0.047) (0.054) (0.054)

JAPAN 0.037 0.038 0.048 0.041
(0.045) (0.044) (0.046) (0.046)

NAICS541 −0.069∗∗ −0.071∗∗ −0.099∗∗∗ −0.097∗∗∗
(0.032) (0.032) (0.036) (0.035)

NAICS334 −0.002 −0.003 0.004 0.004
(0.023) (0.023) (0.026) (0.025)

NAICS33 0.066∗∗∗ 0.065∗∗∗ 0.068∗∗ 0.065∗∗
(0.022) (0.022) (0.029) (0.029)

NAICS511-8 −0.138∗∗∗ −0.147∗∗∗ −0.176∗∗∗ −0.182∗∗∗
(0.040) (0.039) (0.039) (0.038)

Year
dummies−cons

Yes Yes Yes Yes Yes Yes

0.252∗∗∗ 0.297∗∗∗ 0.288∗∗∗ 0.229∗∗∗ 0.184∗∗∗ 0.195∗∗∗
(0.042) (0.080) (0.079) (0.042) (0.065) (0.065)

N 1282 1282 1289 1282 1282 1289

M.C. stands for Mundlak–Chamberlain effect method robust standard errors in parentheses; NAICS, North
American Industry Classification System.
∗p < .10.
∗∗p < .05.
∗∗∗p < .01.
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Table 5. OLS panel regression: dependent variable technological diversity and independent
variable ScaleFree.

Model c R&D (7) Model c M. C. R&D (8) Model c M. C. (9)

RDit−1 0.051∗∗∗ 0.045∗∗∗
(0.007) (0.011)

Stock R&Dit−1 0.021
(0.014)

Scale Freeit −0.128∗∗∗ −0.092∗∗∗ −0.094∗∗∗
(0.024) (0.025) (0.025)

RDit−1 (mean) −0.024
(0.015)

Stock R&Dit−1 −0.004
(mean) (0.018)
Scale Freeit (mean) −0.217∗∗∗ −0.216∗∗∗

(0.052) (0.052)
AGE 0.002∗ 0.002∗

(0.001) (0.001)
AGESQ −0.000∗ −0.000

(0.000) (0.000)
USA −0.053 −0.058

(0.039) (0.039)
EU 0.030 0.018

(0.053) (0.052)
JAPAN 0.062 0.056

(0.045) (0.045)
NAICS541 −0.094∗∗∗ −0.093∗∗∗

(0.035) (0.034)
NAICS334 −0.004 −0.004

(0.025) (0.024)
NAICS33 0.067∗∗ 0.064∗∗

(0.027) (0.027)
NAICS511-8 −0.170∗∗∗ −0.177∗∗∗

(0.038) (0.038)
Year dummies Yes Yes Yes
−cons 0.372∗∗∗ 0.553∗∗∗ 0.563∗∗∗

(0.041) (0.066) (0.065)
N 1282 1282 1289

NAICS, North American Industry Classification System.

Models 7–9 in Table 5 reveal that the scale freeness parameter has a negative and sig-
nificant effect on diversity. This result confirms Hypothesis 4. High values of the scale-free
metric point to a network where highly connected inventors are increasingly in collaboration
with other highly connected inventors, and there is a strong asymmetry of degrees in the
network. When this is the case, fast knowledge diffusion can be accompanied by reduced
diversity. Contrarily, diversity is more likely to be supported in networks with a more
homogeneous distribution of node degrees, as revealed by lower values of the scale-free
parameter.

Interestingly, the sign of RDit−1 coefficient is positive and significant. This variable
measures the innovative efforts and also the firm size. Firms that invest more in R&D
increase their technology diversity which implies that innovative efforts need financial
supports. It also shows that larger firms have more opportunities to manage the diversity of
knowledge within their boundaries. At the same time, the stock of R&D does not affect the
diversity.

To remove the possible bias due to the unobserved heterogeneity, a set of control vari-
ables are included in the specifications with the Mundlak–Chamberlain. In particular, we
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174 G. Cecere and M. Ozman

include a full set of three-digit industry NAICS code to take into account industry differences,
the age of the firm and the country of origin. The set of NAICS code measures of sector
characteristics such as industry concentrations. The results show that technology diversity
is particularly important for the ICT manufacturing sectors NAICS33 in respect to other
as the coefficient is positive and significant at p < .01. As, these firms have been crucial
into the innovative development of the overall ICT sector. On the other hand, the variable
indicating the Professional, Scientific and Technical Services (NAICS541) has negative
and significant sign. This sector has been less technologically diversified as compared with
others, this is possibly associated with the fact that the innovation in this subsector is more
oriented toward services rather than products and thus patents do not adequately reflect
innovation. The country of origin does not influence technology diversity significantly. The
age of the firms positively affect the intensity of technological diversity showing that firms’
experiences are important to improve the innovative activities of the firm.

5. Conclusion
The aim of the present article is to explore the ways in which the structure of intra-firm
inventor networks influences technological diversity, as revealed by the patents granted to a
sample of firms in the ICT sector. The article investigates the impact of tie strength, number
of components and the scale-free metric of inventor networks on technological diversity
of firms. The results of the panel data analysis can be summarized as follows. First, the
analysis reveals a curvilinear relationship between strength of the ties between inventors
and technological diversity. On one hand, strength of ties (as measured by the extent to
which the same inventors repeatedly publish patents together) can promote diversity through
facilitating communication between people, promoting creativity and novel recombinations.
On the other hand, being excessively embedded in networks can render inventors similar to
each other, reducing opportunities for learning, as well as processing of novelty. This can
lead to reduced technological diversity.

Second, such a possible negative impact of strong ties depends on the number of uncon-
nected inventor components in the network. While the number of distinct inventor groups
promotes technological diversity, their precise effect depends on tie strength within existing
components. As number of components increase, the stronger the bonds between the mem-
bers of existing components get, the less will be diversity. Some managerial implications
of this result are as follows. Increasingly cohesive inventor teams, which are characterized
by strong ties between members, should be accompanied by a network strategy in which
the teams are connected to each other. This can be done through bridging inventors, as an
example, or promoting job rotation programs to reduce tie strength at the group level. Third,
the results reveal that increasing tie asymmetry, measured by the extent to which inventors
with high connections collaborate with each other, reduces technological diversity. This
result is obtained through utilizing the scale-free metric as an explanatory variable.

To what extent are the results obtained in this paper valid for other industries and
contexts? The data that are used in this article cover the ICT industry, which has peculiarities
concerning the nature of knowledge and organizations. Consequently, while it is difficult to
draw robust conclusions that might be applicable in other contexts, the article offers a few
insights especially for knowledge intensive industries in which collaboration in research
is a critical aspect of innovation. We focus on two peculiarities of the knowledge base
of ICTs, which are important in drawing implications for other industries. One of the
important peculiarities of the knowledge base of ICT industry is rich economies of scope,
in which knowledge in one context can be reused in other contexts. Such economies of
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scope are a source of diversity in organizations (Teece 1980) and also in the industry. This
is an important peculiarity which strengthens the ultimate negative impact of many teams
with strong ties in an organization. More precisely, although the nature of knowledge base
potentially fosters diversity because the same knowledge can be used in different domains,
this positive impact can be easily hampered through the existence of isolated inventor
components which are strongly connected within. Thereby, the potential of the knowledge
base to maintain variety might not be leveraged. Consequently, it can be argued that in other
organizational contexts apart from ICTs, in which economies of scope is an important aspect
of knowledge base, similar results are expected to be obtained. In addition, the impact of
scale-free characteristics is also specific to the nature of the knowledge base. ICTs draw
upon a complex and tacit knowledge base as far as innovative activities are concerned. Faster
knowledge diffusion within an organization can be more difficult, yet more destructive as
far as diversity is concerned, reducing the opportunities through which diverse domains
can be created and maintained by inventors, and rendering knowledge bases increasingly
similar. These aspects of the knowledge base, which are economies of scope, complexity
and tacitness, are important in determining the extent to which the current results can be
valid in other contexts.

Limitations of this study are as follows. First, the model assumes a fixed knowledge
space by taking into account a fixed number of IPC fields in the patents. In other words,
the model does not take into account growth in the knowledge base of the ICT sector.
Nevertheless, we do not expect this to be a serious problem, since the study covers a
relatively short time frame. Exclusion of different managerial practices as a control variable
is also one of the weaknesses of the current article. However, one of the difficulties is that
they are difficult to measure in a way suitable for regression analysis.

Last but not least, we should keep in mind the problems associated with drawing robust
conclusions from the statistical analysis of large data-sets, especially in organization level
studies. A quotation from Hamel (1991) is seen useful at this point:

Because patterns of causality are extremely complex in most real-world administrative systems,
traditional deductive-analytic methodologies force the researcher to declutter the phenomenon
by: (1) substituting crude proxies for difficult-to-measure determinants or outcomes; (2) assum-
ing away some of the multidimensionality in causal relationships; and/or (3) narrowing the
scope of research. In doing so, much of the potential value of the research is lost. The problem
is not that the resulting theories are under-tested (i.e. they fail a test of rigor), but that they are
under-developed (i.e. they are so partial in coverage that they illuminate only a fragment of the
path between choice, action and outcome).

In this sense, we strongly support the use of detailed case studies to understand in a
better way how some causal relations that maybe revealed by statistical analysis work in
reality. As far as the subject matter of this article is concerned, avenues for future research
include carrying out such case studies at the organization level to complement our findings
regarding the relation between inventor network structures and technological diversity.

Notes
1. Each patent document includes the relevant technology codes related with the subject matter of

the patent, which is given by the eight-digit International Patent Classification (IPC) code. A
patent document is assigned a main code, as well as secondary ones. IPC classes represent an
interesting source of information as they show the technology field in which the patent belongs
to. In our study, the main and secondary IPC codes of patents are used to derive measures of
technological diversity.
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176 G. Cecere and M. Ozman

2. The mapping between IPC codes and 30 technology fields is based on the study by Fraun-
hofer Gessellschaft-ISI (Karlsrube), Institut National de la Propriété Industrielle (INPI-Paris)
and Observatoire des Sciences et des Techniques (OST, Paris).

3. The software Igraph (Csárdi and Nepusz 2006) was used to calculate the number of clusters for
each of the firm in each year in the sample.

4. The R&D stock is deflated with the method proposed by Hall (1993).
5. The specifications 3, 6 and 9 include the stock of R&D.
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